Home
Class 12
MATHS
Prove that following (C(1))/(2)+(C(3))...

Prove that following
`(C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+(C_(7))/(8)+……=(2^(n)-1)/(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (C_1)/(2) + (C_3)/(4) + (C_5)/(6) + (C_7)/(8) + …… = (2^n - 1)/(n+ 1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n+1)-1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n)-1)/(n+1) .

Prove the following: C_(0)+(C_(2))/(3) +(C_(4))/(5) + … = (2^(n))/(n+1)

Prove the following: C_(0)-(C_(1))/(2)+(C_(2))/(3) - …+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .