Home
Class 12
MATHS
सिद्ध कीजिए कि y=ae^(-2x)+be^(x) अवकल सम...

सिद्ध कीजिए कि `y=ae^(-2x)+be^(x)` अवकल समीकरण `(d^(2)y)/(dx^(2))+(dy)/(dx)-2y=0` का हल है |

Promotional Banner

Similar Questions

Explore conceptually related problems

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y=ae^(2x)+be^(-x), show that (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

If y=a e^(2x)+b e^(-x) , show that, (d^2y)/(dx^2)-(dy)/(dx)-2y=0 .

y=Ae^(mx)+Be^(nx) show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y = Ae^(6x) +Be^(-x) prove that (d^(2)y)/(dx^(2)) - 5 (dy)/(dx) - 6y = 0

If y=Ae^(mx)+Be^(nx), show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0