Home
Class 12
MATHS
If x and y are positive integers such th...

If x and y are positive integers such that `tan^(-1)x+cot^(-1)y=tan^(-1)3`, then:

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot^(-1)x + cot^(-1)y = tan^(-1)c, then: x+y=

If x and y are positive and xygt1 , then what is tan^(-1)x+tan^(-1)y to?

The number of positive integral solution of the equation tan^(-1)x+cot^(-1)y=tan^(-1)3 is

Find the number of positive integral solutions of tan ^(-1)x+cot^(-1)y=tan^(-1)3

The number of positive integral solutions of tan^(-1)x + cot^(-1)y= tan^(-1)3 is :

The number of positive integral solutions of tan^(-1)x + cot^(-1)y= tan^(-1)3 is :

If x and y are positive integer satisfying tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7) , then the number of ordered pairs of (x,y) is

If x and y are positive integer satisfying tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7) , then the number of ordered pairs of (x,y) is

If x and y are positive integer satisfying tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7) , then the number of ordered pairs of (x,y) is

If x and y are positive and xy gt 1, then what is tan^(-1)x + tan^(-1)y equal to ?