Home
Class 12
MATHS
y=(a+bx)cos x +(c+dr)sinx is...

` y=(a+bx)cos x +(c+dr)sinx `is

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sinx)^(cosx) + (cos x)^sinx , then find dy/dx .

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=

Prove geometrically that cos(x + y) = cos x cos y - sinx sin y and hence prove cos((pi)/(2) + x) = - sin x .

If y = ae ^(-bx) cos (cx +d) then y _(2) + 2by_(1) + (b ^(2) +c ^(2)) y =

The derivative of e ^(ax) cos (bx +c ) w.r.t x is

sec x dy +cosec y dx=0 A) cos x-sin xy=c B) cos x+siny=c C) sinx-cos y=c D) sin(x-y)=c

Which of the following functions represent stationary wave. Where a,b,c are constants (a) y= a cos (bx) sin (ct) (b) y= a sin (bx) cos (ct) (c) y=a sin (bx+ct) (d) y= a sin (bx+ct)+a sin (bx-ct)

Which of the following functions represent stationary wave. Where a,b,c are constants (a) y= a cos (bx) sin (ct) (b) y= a sin (bx) cos (ct) (c) y=a sin (bx+ct) (d) y= a sin (bx+ct)+a sin (bx-ct)

If tanx = (2b)/(a-c) , a ne c, y = a cos^2 x + 2b sinx.cos x + c sin^2 x z = a sin^2 x -2b sinx.cos x+"c" cos ^2x then

Find (dy)/(dx) , when If y = (cos x + sinx)/(cos x - sinx) , show that (dy)/(dx) = sec^(2) (x + (pi)/(4)) .