Home
Class 12
MATHS
If tan alpha = 1/7, sin beta = 1/sqrt(10...

If `tan alpha = 1/7, sin beta = 1/sqrt(10),` Prove that : `alpha + 2beta = pi/4`, where `0ltalpha lt pi/2 and 0ltbeta lt pi/2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tanalpha=1/7,sin beta=1/(sqrt(10)), prove that alpha+2beta=pi/4

If tan alpha=(1)/(7),sin beta=(1)/(sqrt(10)), Prove that :alpha+2 beta=(pi)/(4), where 0

If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove that alpha+2beta=pi/4 , where 0

If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove that alpha+2beta=pi/4 , where 0

If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove that alpha+2beta=pi/4 , where 0

If tan alpha=(1)/(7),sin beta=(1)/(sqrt(10)), prove that alpha+2 beta=(pi)/(4), where 0

If 0 lt alpha lt beta lt (pi)/(2) then

If sin alpha=(1)/(sqrt(10)) and sin beta=(1)/(sqrt(5)) then prove that alpha+beta=(pi)/(4)

If alpha + beta and alpha - beta are solutions of theta for the equation tan^(2)theta - 4tan theta =-1 where 0 lt alpha lt pi/2 and 0 lt beta lt pi/2 then find alpha and beta .

If 0 lt alpha lt beta lt (pi)/(2) , prove that, tan alpha-tan beta lt alpha-beta .