Home
Class 11
MATHS
Prove that : cos A+cos(A+(2 pi)/(3))+cos...

Prove that : `cos A+cos(A+(2 pi)/(3))+cos(A+(4 pi)/(3))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos A+cos((4 pi)/(3)-A)+cos((4 pi)/(3)+A)=0

Prove that cos x+cos((2 pi)/(3)-x)+cos((2 pi)/(3)+x)=0

Prove that: 2cos pi/(13) cos (9pi)/(13) +cos (3pi)/(13) +cos (5pi)/(13)=0

Prove that: 2cos theta cos((pi)/(3)+theta)cos((pi)/(3)-theta)=cos3 theta

Prove that: cos^(2)A+cos^(2)(A+(pi)/(3))+cos^(2)(A-(pi)/(3))=(3)/(2)

Prove that: cos ((2 pi) / (15)) * cos ((4 pi) / (15)) * cos ((8 pi) / (15)) * cos ((16 pi) / (15)) = (1) / (16)

Prove that: cos^(2)A+cos^(2)(A+(2 pi)/(3))+cos^(2)(A-(2 pi)/(3))=(3)/(2)

cos^(2)((3 pi)/(5))+cos^(2)((4 pi)/(5))=

Prove that: cos^(3)A + cos^(3)((2pi)/(3)+A) + cos^(3)((4pi)/3+A) = 3/4 cos3A

Prove that cos((pi)/(8))+cos((3 pi)/(8))+cos((5 pi)/(8))+cos((7 pi)/(8))=0