Home
Class 11
MATHS
If y=mx+c " and " f(0)=f'(0)=1, " then "...

If `y=mx+c " and " f(0)=f'(0)=1, " then " f(2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x) = mx +c and if f(0)=f'(0)=1, what is f(2) ?

If f(x)=mx+c and f(0)=1=f'(0) then f(-2)= (i) 1 (ii) -1 (iii) 3 (iv) +-1

If f(x)=mx+c , f(0)=f'^ (0)=1 then f(2)=

Let f(x)=mx+c and f(0)=f'(0)=1 Find f(2).

If f(x)=mx+c and f(0)=f'(0)=1 What is f(2)?

If f(x)=mx+c , f(0)=f^ (0)=1 then f(2)=

Find the derivative of the function If f (x) = mx + c and if f (0) = f ^(1) (0) =1 then find f (2).

if f(x)=mx+c and f(0)=f'(0)=1 then find the value of f(3)

If f(x-y),f(x)*f(y),f(x+y) are in A.P for all x,y in R " and " f(0) ne 0 , then (a) f'(x) is an even function (b)f'(1)+f'(-1)=0 (c)f'(2)-f'(-2)=0 (d)f'(2)-f'(-2)=0

f(x+(1)/(y))+f(x-(1)/(y))=2f(x)*f((1)/(y)) for all xy in R-{0} and f(0)=(1)/(2), then f(4) is