Home
Class 11
PHYSICS
Say whether vecA.vecB is commulative....

Say whether `vecA.vecB` is commulative.

Promotional Banner

Similar Questions

Explore conceptually related problems

Say whether vecAxxvecB is commulative.

state whether it is true or false: projection of a vector veca on vecb is veca.vecb

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If vecAxxvecB=0, can you say that a. vecA=vecB, b. vecA!=vecB?

If vecAxxvecB=0, can you say that a. vecA=vecB, b. vecA!=vecB?

If vecAxxvecB=0, can you say that a. vecA=vecB, b. vecA!=vecB?

State whether it is true or false If veca, vecb are two vectors then |veca.vecb|le|veca||vecb|

For three vectors vecA, vecB and vecC and |vecA|+|vecB|=|vecC| . What can we say about direction of these vectors?

The resolved part of the vector veca along the vector vecb is veclamda and that perpendicular to vecb is vecmu . Then (A) veclamda=((veca.vecb).veca)/veca^2 (B) veclamda=((veca.vecb).vecb)/vecb^2 (C) vecmu=((vecb.vecb)veca-(veca.vecb)vecb)/vecb^2 (D) vecmu=(vecbxx(vecaxxvecb))/vecb^2