Home
Class 12
MATHS
ifa=cos(2pi//7)+isin(2pi//7) , then fin...

if`a=cos(2pi//7)+isin(2pi//7)` , then find the quadratic equation whose roots are `alpha=a+a^2+a^4a n dbeta=a^3+a^5+a^7` .

Promotional Banner

Similar Questions

Explore conceptually related problems

F a=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4a n dbeta=a^3+a^5+a^6 .

if a=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4 and beta=a^3+a^5+a^6 .

if a=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4 and beta=a^3+a^5+a^6 .

If a=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4 and beta=a^3+a^5+a^6 .

If a=cos((2pi)/7)+i sin((2pi)/7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4 and beta=a^3+a^5+a^7 .

if a=cos(2 pi/7)+i sin(2 pi/7), then find the quadratic equation whose rots are alpha=a+a^(2)+a^(4)and beta=a^(3)+a^(5)+a^(7)

If alpha=cos((2pi)/7)+i sin((2pi)/7) then a quadratic equation whose roots are (alpha+ alpha^(2)+ alpha^(4)) and (alpha^(3)+ alpha^(5)+alpha^(6))

If alpha=cos(2 pi)/(7)+i sin(2 pi)/(7) then a quadratic equation whose roots are (alpha+alpha^(2)+alpha^(4)) and (alpha^(3)+alpha^(5)+alpha^(6)) is

Find the quadratic equation in x whose roots are (-7)/(2) and (8)/(3) .