Home
Class 12
MATHS
lim(x to 0){(1+tanx)/(1+sinx)}^("cosec x...

`lim_(x to 0){(1+tanx)/(1+sinx)}^("cosec x")` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(x -> 0)((1+tanx)/(1+sinx))^(cos e cx) is equal to (a)e (b) 1/e (c) 1 (d) none of these

("lim")_(x -> 0)((1+tanx)/(1+sinx))^(cos e cx) is equal to (a)e (b) 1/e (c) 1 (d) none of these

lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

lim_(x rarr0){(1+tan x)/(1+sin x)}^(csc x)

lim_(x rarr 0) ((1+tanx)/(1+sin x))^(cosec x) =

underset( x rarr 0 ) ( "lim")((1+sin x )/( 1- sin x ))^("cosec x ") is equal to :

Evaluate the following limits: lim_(x to0)((1+tanx)/(1+sinx))^("cosec"x)

The value of lim_(xrarr0)((1+tanx)/(1+sinx))^((2)/(sinx)) is equal to