Home
Class 11
MATHS
Show that lim(xtooo)1/1.2+1/2.3+1/3.4+...

Show that
`lim_(xtooo)1/1.2+1/2.3+1/3.4+...+1/(n(n+1))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that lim_(xtooo)(1+2+3+...+n)/(3n^(2)+7n+2)=1/6

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

The value of Lim_(x to oo)(1.2+2.3+3.4+....+n.(n+1))/(n^(3))= is

underset(n to oo)lim {(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))}=

lim_(nrarroo)(1+((1+1/2+1/3+. . . +1/n)/n^2))^n

Show that lim_(xtooo)(1^(2)+2^(2)+...+(3n)^(2))/((1+2+...+5n)(2n+3))=9/25

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :