Home
Class 12
MATHS
The set of all the possible values of th...

The set of all the possible values of the parameter 'a' so that the function,
`f(x) = x^(3)-3(7-x)x^(2)-3(9-a^(2))x+2`, assume local minimum value at some `x in (-oo, 0)` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

All the possible values of the paramter 'a' so that the function , f(x) =x^3-3(7-a)x^2-3(9-a^2)x+2, has a negative point of local minimum

The number of integral values of a in [0,10) so that function, f(x)=x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2017 assume local minimum value at some xepsilonR^(-)

The number of integral values of a in [0,10) so that function, f(x)=x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2017 assume local minimum value at some xepsilonR^(-)

The set of all the possible values of a for which the function f(x)=5+(a-2)x+(a-1)x^(2)-x^(3) has a local minimum value at some x 1 is

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

For what value of x, does the function f(x) = x^(2//3) have a local minimum value?

The function f(x)=(x^2-4)^n(x^2-x+1),n in N , assumes a local minimum value at x=2. Then find the possible values of n

The function f(x)=(x^2-4)^n(x^2-x+1),n in N , assumes a local minimum value at x=2. Then find the possible values of n

The function f(x)=(x^2-4)^n(x^2-x+1),n in N , assumes a local minimum value at x=2. Then find the possible values of n

The function f(x)=(x^2-4)^n(x^2-x+1),n in N , assumes a local minimum value at x=2. Then find the possible values of n