Home
Class 10
MATHS
Let the root of equation (3x^3-x^2+x-1)/...

Let the root of equation `(3x^3-x^2+x-1)/(3x^3-x^2-x+1)=(4x^3+7x^2+x+1)/(4x^3+7x^2-x-1)` be `x_1,x_2,x_3` then the value of `x_1+x_2+x_3` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the roots of the equation (3x^3-x^2+x-1)/(3x^3-x^2-x+1)=(4x^3+7x^2+x+1)/(4x^3+7x^2-x-1) be x_1 , x_2 and x_3 , then the value of x_1+x_2+x_3 is a.    0 b.    1 c.    -1 d.   None of these

Solve the equation (3x^4+x^2-2x-3)/(3x^4-x^2+2x+3)=(5x^4+2x^2-7x+3)/(5x^4-2x^2+7x-3)

(3 x^2 - 7x + 1) (4x - 4x) = ____

The roots of the equation,(x^(2)+1)^(2)=x(3x^(2)+4x+3) are given by -

If x = 1/(2-sqrt3) then find the value of (x^(3) -2x^2 - 7x +4)

Divide the product of (4x^(2)-9) and (2x^(2)-3x+1) by (4x^(3)-7x+3) .

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is