Home
Class 12
MATHS
If M and m are maximum and minimum value...

If M and m are maximum and minimum value of the function `f(x)= (tan^(2)x+4tanx+9)/(1+tan^(2)x)`, then (M + m) equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x)=tan x-2x

Find the maximum and minimum values of the function f(x)=tanx-2x .

The minimum value of the function f(x) =tan(x +pi/6)/tanx is:

The minimum value of the function f(x) =tan(x +pi/6)/tanx is:

If M and m are the maximum and minimum values respectively of the function f(x)= x+ (1)/(x) , then the value of M - m is-

Let M and m respectively be the maximum and minimum values of the function f(x) = tan^(-1) (sin x + cos x) " in " [0, (pi)/(2)] . Then the vlaue of tan (M-m) is equal to :

The minimum value of the function m ax (x, x^(2)) is equal to

If M and m are maximum and minimum value of f(x)=cos^(2)x-4cos x+7,x in R respectively then find (M-m)

If M and m are the greatest and least value of the function f(x)=(cos^(-1)x)^2+(sin^(-1)x)^2 then the value of ((M+9m)/m)^3 is …..

If M and m are the greatest and least value of the function f(x)=(cos^(-1)x)^2+(sin^(-1)x)^2 then the value of ((M+9m)/m)^3 is …..