Home
Class 12
MATHS
int (0) ^(pi)[ cos ^(2) ((3pi)/(8) - (x ...

`int _(0) ^(pi)[ cos ^(2) ((3pi)/(8) - (x )/(4)) - cos ^(2) ((11pi)/(8)+ (x )/(4))] dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi) cos^(8) x dx=

int[sin^(2)((9 pi)/(8)+(x)/(4))-sin^(2)((7 pi)/(8)+(x)/(4))]dx

int_(0)^(pi//8) cos^(6) 4 x dx=

int_(0)^( pi)(x)/(4-cos^(2)x)dx

cos ^(4) (pi)/(8)+cos ^(4) (3 pi)/(8)+cos ^(4) (5 pi)/(8)+cos ^(4) (7 pi)/(8)=

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Prove that cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + cos ^(4) ""(5pi)/(8) + cos ^(4) "" (7pi)/(8) = (3)/(2)

Prove that cos ^(4) (pi)/(8)+cos ^(4) (3 pi)/(8)+cos ^(4) (5 pi)/(8)+cos ^(4) (7 pi)/(8)=(3)/(2)

Find int_(0)^(pi//2) cos^(8)x dx

cos ^ (4) ((pi) / (8)) + cos ^ (4) ((3 pi) / (8)) + cos ^ (4) ((5 pi) / (8)) + cos ^ ( 4) ((7 pi) / (8)) =