Home
Class 11
MATHS
Prove that sin 2x=(2 tan x)/(1+tan^(2)x)...

Prove that `sin 2x=(2 tan x)/(1+tan^(2)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin 2x =( 2tan x )/( 1+ tan ^(2) x)

Prove that tan2x=(2tanx)/(1-tan^2 x)

Prove that: tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

Prove that tan4x=(4tanx(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

Prove that tan4x=(4tanx(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

Show that sin 2 x=2 sin x cosx=(2 tan x)/(1+tan ^(2) x)

Prove that (1- sin 2x)/(1+ sin 2x) = tan^(2) .((pi)/(4)-x)

Prove that (sin x)/(1+cos x)=tan((x)/(2))

Prove that (1+ sin 2x - cos 2x)/(1+ sin 2x + cos 2x) =tan x

Prove that: tan4x=(4tanx(1-tan^2x))/(1-6tan^2x+tan^4x)