Home
Class 12
MATHS
lim(x rarr 0) (sqrt(1+x^2) - sqrt(1-x+x^...

`lim_(x rarr 0) (sqrt(1+x^2) - sqrt(1-x+x^2))/(3^x - 1) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =

lim_(x rarr 0) (sqrt (1+x^(2)) - sqrt(1-x^(2)))/x =

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(3^(x)-1)=

lim_(x rarr0)(x)/(sqrt(1+x)-sqrt(1-x))

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr0)(sqrt(1+sin x)-sqrt(1-sin x))/(x)

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(x)=?

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(x)

Evaluate the following limit : lim_(x rarr 0) (sqrt(1-x^2)-sqrt(1+x^2))/(2x^2) .

Lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(x)