Home
Class 12
MATHS
If the function f(x)=x^(3)-3ax has a loc...

If the function `f(x)=x^(3)-3ax` has a local minimum at `x=lambda(lambda ge 4)` and `a in [10, 18]`, then the sum of all the possible integral values of a is

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=x^(3)-ax has a local minimum at x=k , where k ge 2, then a possible value of a is

The function f(x)=x^(3)-ax has a local minimum at x=k , where k ge 2, then a possible value of a is

If 3x^2-17x+10=0 and x^2-5x+lambda=0 has a common root then sum of all possible real values of lambda is

If the local minimum of the function f(x)=x^(3)-3a^(2)x+4(AA a gt 0) occurs at x=lambda (AA lambda gt 1) , then a may take the value

If the local minimum of the function f(x)=x^(3)-3a^(2)x+4(AA a gt 0) occurs at x=lambda (AA lambda gt 1) , then a may take the value

Show that the function f(x)=4x^3-18x^2+27x-7 has neither local maxima and local minima

The function f(x)=x^(2)+(lambda)/(x) has a (a)minimum at x=2 if lambda=16 (b)maximum at x=2 if lambda=16 (c)maximum for no real value of lambda(d) point of inflection at x=1 if lambda=-1