Home
Class 12
MATHS
lim(x rarr 0) (e^x - e^sinx)/(2(x - sinx...

`lim_(x rarr 0) (e^x - e^sinx)/(2(x - sinx)) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(x)-e^(sin x))/(2(x-sin x))=

Evaluate the following limit : lim_(x rarr 0) (e^x-e^(sinx))/(x-sinx) .

The value of lim_(x to 0) (e^x-e^sinx)/(2(x-sinx)) , is

The value of lim_(x to 0) (e^x-e^sinx)/(2(x-sinx)) , is

lim_(x rarr 0) (e^x+e^-x-2 cosx)/(x sinx)

lim_(x to 0) (e^x-e^sinx)/(x-sinx)

Evaluate the following limit : lim_(x rarr 0)((e^x-e^(-x))/(sinx)) .

Evaluate the following limit : lim_(x rarr 0) (e^(x)-e^(-x))/(sinx) .

lim_(x rarr0)((e^(3x)-e^(2x))/(x))