Home
Class 12
MATHS
यदि A+B+C=pi हो तो सिद्ध कीजिए कि - (c...

यदि `A+B+C=pi` हो तो सिद्ध कीजिए कि -
`(cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsinB)=2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , then (cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsinB)=?

if A+B+C=pi then cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=

If A+B+C=pi then cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=

If A+B+C=pi , prove that : (cosA)/(sinBsinC) + (cosB)/(sinC sinA) + (cosC)/(sinA sinB) =2 .

If A+B+C=pi prove that (cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsinB)=2 .

If A+B+C=pi , prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (cosC)/(sinA sinB) =2 .

If A+B+C=pi , prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (cosC)/(sinA sinB) =2 .

If A + B + C= pi , prove that cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=2

If A+B+C=180^(@) then prove that the following: (cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsinB)=2

In a triangle ABC, the value of cosA/sinBsinC ​ + cosB/sinCsinA ​ + cosC/sinAsinB ​