Home
Class 12
MATHS
Ify=sqrt(x+y), prove that (dy)/(dx)=(1)/...

If`y=sqrt(x+y)`, prove that `(dy)/(dx)=(1)/((2y-1)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sqrt(x+y) then prove that (dy)/(dx)=1/(2y-1)

If y= sqrt(x+y) then prove that (dy)/(dx)=1/(2y-1)

If y=sqrt(x+sqrt(x+sqrt(x+...to oo)),) prove that (dy)/(dx)=(1)/(2y-1)

If y=sqrt(x+sqrt(x+sqrt(x+...tooo))), prove that (dy)/(dx)=1/(2y-1)

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=sqrt(x+sqrt(x+sqrt(x+…… prove that (dy)/(dx)=1/(2y-1)

If y=sqrt(x+sqrt(x+sqrt(x+longrightarrow oo))), prove that (dy)/(dx)=(1)/(2y-1)

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .