Home
Class 11
MATHS
Prove that: ("tan"(A+B))/("cot"(A-B))=\ ...

Prove that: `("tan"(A+B))/("cot"(A-B))=\ (tan^2A-tan^2B)/(1-tan^2Atan^2B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (tan(A+B))/(cot(A-B))=(tan^(2)A-tan^(2)B)/(1-tan^(2)A tan^(2)B)

Prove that: tan(A+B)tan(A-B)=(tan^(2)A-tan^(2)B)/(1-tan^(2)A tan^(2)B)

Prove: (tan A+tan B)/(cot A+cot B)=tan A tan B

Prove: tan^2Asec^2B-sec^2Atan^2B=tan^2A-tan^2B

Prove that : (cot A + tan B)/ (cot B + tan A) = cot A tan B

Prove: (cot A+tan B)/(cot B+tan A)=cot A tan B

In any Delta ABC, prove that : ((a-b)/(c))=(tan((A)/(2))-tan((B)/(2)))/(tan((A)/(2))+tan((B)/(2)))

If A+B+C=180^(@) , prove that: "tan"2A+ "tan"2B+"tan" 2C="tan" 2A "tan"2B tan 2C

Prove that tan((A-B)/2)= (a-b)/(a+b)cot frac(c)(2)

Prove that, tan((A)/(2)+B)=(c+b)/(c-b)tan((A)/(2))