Home
Class 12
MATHS
Let f(k) ""=(1)/(k) ( sin ^(k) x + cos...

Let `f_(k) ""=(1)/(k) ( sin ^(k) x + cos^(k)x),` where `x in RR and k gt 1` then ` f_(4) (x)- f_(6)(x)` equals -

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f_(4)(x) = (1)/(k) [ sin^(k) + cos^(k) x ] where x in RR and k ge 1. then f_(4)(x) - f_(6)(x) =

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k ge1 , then f_(4)(x)-f_(6)(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and kge1 then f_(4)(x)-f_(6)(x) equals

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k>=1. Then f_(4)(x)-f_(6)(x) equals

Let F_(k)(x)=1/k (sin^(k)x+cos^(k)x) , where x in R and k ge 1 , then find the value of F_(4)(x)-F_(6)(x) .

Let F_(k)(x)=1/k (sin^(k)x+cos^(k)x) , where x in R and k ge 1 , then find the value of F_(4)(x)-F_(6)(x) .