Home
Class 12
MATHS
f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+...

`f(x)=sin^2x+cos^4x+2` and `g(x)=cos(cosx)+cos(sinx)` Also let period f(x) and g(x) be `T_1` and `T_2` respectively then

Promotional Banner

Similar Questions

Explore conceptually related problems

If fundamental period of the functions f(x)=sin^(2)x+cos^(4)x and g(x)=cos(sin2x)+cos(cos2x) are lambda_(1) and lambda_(2) respectively then (lambda_(1))/(lambda_(2))=

Let f(x)=cos x and g(x)=x^(2)

Let f(x)=sin x+cosx and g(x)=x^(2)-1 , then g{f(x)} is invertible if -

Let f(x) = |sinx| + |cosx|, g(x) = cos(cosx) + cos(sinx) ,h(x)={-x/2}+sinpix , where { } representsfractional function, then the period of

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+ (g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be

If f(x)=sin x+cos x and g(x)=x^(2)-1 then g(f(x)) is invertible in the domain.