Home
Class 12
MATHS
Find (dy)/(dx) when : x=a(2t+sin2t), ...

Find `(dy)/(dx)` when :
`x=a(2t+sin2t), y=a(1-cos2t)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when : x=a(t-sin t), y=a(1-cos t)" at " t=(pi)/(2)

Find (dy)/(dx) , when x=a t^2 and y=2\ a t

Find (dy)/(dx) when : x=a(cos t+"log tan"(t)/(2)), y=a sin t

Find (dy)/(dx) when : tan y=(2t)/(1-t^(2)), sin x=(2t)/(1+t^(2))

Find dy/dx when x = a sin^2 t, y = b cos^2 t

Find (dy)/(dx) : x=a sin 2t (1+ cos 2t) and y= b cos 2t (1-cos 2t) show that, ((dy)/(dx))_(t = (pi)/(4))= (b)/(a)

Find (dy)/(dx) , if x=(sin^3t)/(sqrt(cos2t)) , y=(cos^3t)/(sqrt(cos2t))

Find (dy)/(dx) if x =a ( cos t + t sin t ), y = a ( sin t - t cos t).

If x and y are connected parametrically by the equations given, without eliminating the parameter, Find (dy)/(dx) . x=(sin^3t)/(sqrt(cos2t)), y=(cos^3t)/(sqrt(cos2t))