Home
Class 11
MATHS
L=(lim)(x->a)(|2sinx-1|)/(2sinx-1)dot...

`L=(lim)_(x->a)(|2sinx-1|)/(2sinx-1)dotT h e n` limit does not exist when (a) `a=pi/6` (b) `L=-1 when a=pi` (c) `L=1 when a=pi/2` (d) `L=1 when a=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

L=lim_(x to a)(|2sinx-1|)/(2sinx-1)dotT h e n (a) limit does not exist when a=pi/6 (b) L=-1w h e na=pi (c) L=1w h e na=pi/2 (d) L=1w h e na=0

If lim_(xrarr0)(2ax+(a-1)sinx)/(tan^3x)=l ,then a+l is equal to

If lim_(xrarr0)(2ax+(a-1)sinx)/(tan^3x)=l ,then a+l is equal to

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

Consider lim_(x->0)(a x+b e^(-x)+sinx+1)/(a x-bsinx)=l (l is finite) then

L i m i t\ l=(lim)_(x->oo)(pi/2-t a n^-1\ x)/(ln(1-1/x)) equals

f(x)=[(sinx)/x ,"w h e n"x!=0=2,"w h e n"x=0 sinx-, when x0/(x) =L= 2, when x=0

Compute d/(dx)(sin^-1(sinx)) when pi/2 le x le (3pi)/2

If lim_(x->0)[1+x1n(1+b^2)]^(1/x)=2bsin^2theta,b >0 ,where theta in (-pi,pi], then the value of theta is (a) +-pi/4 (b) +-pi/3 (c) +-pi/6 (d) +-pi/2