Home
Class 10
MATHS
The value of sum(n=1)^(10) n is:...

The value of `sum_(n=1)^(10) n` is:

A

10

B

11

C

55

D

110

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • ARITHMETIC PROGRESSIONS

    OSWAAL PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTION|8 Videos
  • ARITHMETIC PROGRESSIONS

    OSWAAL PUBLICATION|Exercise SHORT ANSWER TYPE QUESTION|15 Videos
  • AREAS RELATED TO CIRCLES

    OSWAAL PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS - I|20 Videos
  • CIRCLES

    OSWAAL PUBLICATION|Exercise TEXTBOOK CORNER (EXERCISE 4.2)|13 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(10)r(n C_(r))/(n C_(r-1)) =

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

The value of sum_(r=1)^(n) log ((a^(r ))/( b^(r-1))) is :

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)(x^(n)+(1)/(x^(n)))^(2) is

The value of sum_(r=1)^(n)(nP_(r))/(r!)=