Home
Class 12
MATHS
int(1)^(e)(dx)/(x(1+log x)^(2))=...

int_(1)^(e)(dx)/(x(1+log x)^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

The value of int _(1)^(e^(2)) (dx)/(x(1+ log x)^(2) ) is

int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(1)^(e)(e^(x))/(x)(1+x log x)dx

Evaluate the following definite integral: int_(1)^(e)(e^(x))/(x)(1+x log x)dx

-int_(1)^(e)((log x)^(2))/(x)*dx

The value of int_(1)^(e)(1)/(x)(1+log x)dx is

int_(1)^(e )(1)/(x sqrt(log x))dx=