Home
Class 12
MATHS
In a triangle the expression (a^2b^2c^2(...

In a triangle the expression `(a^2b^2c^2(sin2A + sin2B + sin2C))/Delta^3` simplifies to

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC prove that sin2A+sin2B+sin2C=(abc)/(2R^3)

In any triangle ABC b^(2)sin2C+c^(2)sin2B=

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If any triangle A B C sin ^(2) A+sin ^(2) B-sin ^(2) C=

"In triangle ABC " "c(sin^(2)A+sin^(2)B)=sin C(a sin A+b sin B)

In any triangle ABCb^(2)sin2C+c^(2)sin2B is equal to

In a triangle ABC, sin^(2)A + sin^(2)B + sin^(2)C = 2 , then the triangle is

In triangle ABC if sin^2B+sin^2C=sin^2A then

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C