Home
Class 9
MATHS
" (iv) "x^(3)-3x^(2)+3x+7...

" (iv) "x^(3)-3x^(2)+3x+7

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise each of the following polynomials using synthetic division: (i) x^(3) -3x^(2) -10x +24 (ii) 2x^(3) -3x^(2) -3x +2 (iii) -7x +3+4x^(3) (iv) x^(3) +x^(2) -14x -24 (v) x^(2) - 7x+ 6 ( vi ) x^(3) -10x ^(2) -x+ 10

If f(x) = x^(3) - 3x^(2) + 3x + 7 , then -

Factorize :x^(3)+3x^(2)+3x-7x^(3)-3x^(2)+3x+7x^(6)-7x^(3)-8

Factorise: x ^(3) - 3x ^(2) + 3x + 7

Factorize : (i)x^(6)-7x^(3)-8(ii)x^(3)+3x^(2)+3x-7

Prove that,function x^(3)-3x^(2)+3x+7 neither has maximum nor minimum at x=1

alpha,beta and gamma are the roots of x^(3)-3x^(2)+3x+7=0 then sum((alpha-1)/(beta-1)) is (where omega is a cube root of unity)

if alpha,beta, gammaare the roots of x^(3)-3x^(2)+3x+7=0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

If a,b,c are the roots of the equation x^(3)-3x^(2)+3x+7=0, then the value of det[[2bc-a^(2),c^(2),b^(2)c^(2),2ac-b^(2),a^(2)b^(2),a^(2),2ab-c^(2)]] is

If alpha,beta and gamma are the roots of x^(3)-3x^(2)+3x+7 , where omega is a cube root of unity, then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1) equals :