Home
Class 12
MATHS
If A, B, C are angles in a triangle , ...

If A, B, C are angles in a triangle , then prove that`cos^(2)A+cos^(2)B-cos^(2)C=1-2sin Asin Bcos C.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

If A+B+C=180^(@) then prove that cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

If A, B, C are angles of a triangle, then prove that sin^(2)""A/2+sin^(2)""B/2-sin^(2)""C/2=1-2cos""A/2cos""B/2sin""C/2 .

If A,B,C are angles of a triangle, prove that sin((B+C)/2)="cos"A/2

If DeltaABC is a right angle triangle then prove that cos^(2)A+cos^(2)B+cos^(2)C=1iffsin^(2)A+sin^(2)B+sin^(2)C=2

IF A,B,C are angles of a triangle , Prove that cos2A+cos 2B+cos 2C=-4cosAcosBcosC-1