Home
Class 11
MATHS
Verify the property A(B+C) = AB+AC, when...

Verify the property A(B+C) = AB+AC, when the matrices A,B, and C are given by
`A=[(2,0,-3),(1,4,5)],B=[(3,1),(-1,0),(4,2)],and C=[(4,7),(2,1),(1,-1)]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(2,3),(5,7)], B=[(0,4),(-1,7)]andC=[(1,0),(-1,4)] find AC+B^(2)-10C .

For the matrices A and B, A = [(2,1,3),(4,1,0)], B = [(1,-1),(0,2),(5,0)] , verify that (AB)' = B'A'

Verify associative law of matrix additions for the matrices : A=[(1,0),(2,-1)],B=[(3,7),(4,8)] and C=[(-1,0),(0,0)] .

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

Verify that A(B+C)=(AB+AC), when (i) A=[{:(1,2),(3,4):}],B=[{:(2," "0),(1,-3):}]" and "C=[{:(1,-1),(0," "1):}]. (ii) A=[{:(2,3),(-1,4),(0,1):}],B=[{:(5,-3),(2," "1):}]" and "C=[{:(-1,2),(" "3,4):}].

For the matrices A and B, verify that (AB)'=B'A. (i) A=[{:(1),(3),(6):}],B=[2" "4," "5] (ii) A=[{:(5,3,-1),(2,0,4):}]B=[{:(-3,2),(2,1),(-1,0):}]

If A = [(5,1,1),(2,3,0)], B = [(2,3),(-1,1),(4,0)] , verify that (AB)' = B'A'.

Verify that A(B+C)=AB+AC in each of the following matrices A=[[1,-1,3],[2,3,2]],B=[[1,0],[-2,3],[4,3]] and C=[[1,2],[-2,0],[4,-3]]

Verify that A(B+C)=AB+AC in each of the following matrices A=[[4,-2],[2,3]],B=[[-1,1],[3,-2]] and C=[[4,1],[2,-1]]