Home
Class 12
MATHS
If f(x)= |(x, 2, 3x), (1, -1, 5), (2, 0,...

If `f(x)= |(x, 2, 3x), (1, -1, 5), (2, 0, 2x)|,` then the number of integer(s) in the range of `f(x)` for `x in [-1,0]` is (are)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = |(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| , then f^(1)(x)=

If f(x)={0,x<1 and 2x-2,x<=1 then the number of solutions of the equation f(f(f(x)))=x is

Let f(x) = 2x^2 –10x , oo < x <= -5 and f(x)=x^2-5 , -5 < x < 3 and f(x)=x^2+1 , 3 <= x < oo Number of negative integers in the range of the function f(x) is

If f(x)=3x-5 and x in {-1,0,1,3,4} then find the range of f

If f(x)=|(a,-1,0),(ax,a,-1),(ax^(2),ax,a)| then f(3x)-f(2x)=

f(x)={[(8)/(pi)tan^(-1)(-|x|+3),|x|>2,[(3x^(2)-|x|+3)/(x^(2)+1)],|x|<=2 Number of integers in the range of f(x) is ]]|x|<=2

Consider the function f(x)=(x^(2)-|x|+2)/(|x|+1),(x in R) the number of integers for which f(x)<0 is

If y=f(x)=(3x-5)/(x^(2)-1) when (x!=1) then find the range of f(x) when (x!=1) then