Home
Class 12
MATHS
A function f satisfies the condition f(x...

A function f satisfies the condition `f(x)=f'(x)+f''(x)+f''(x)+…,` where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f satisfies the condition f(x) - f'(x) +f'(x) + f''(x) + ......, where f(x) is a differentiable function indefinitely and dash denotes the order of derivative . If f(0) =1 , then f(x) is

A function f satisfies the condition f(x)=f^(prime)(x)+f''(x)+f'''(x)....+infinity ,w h e r ef(x) is a differentiable function indefinitely and dash denotes the order of derivative. If f(0)=1,t h e nf(x) is e^(x/2) (b) e^x (c) e^(2x) (d) e^(4x)

A function f satisfies the condition f(x)=f^(prime)(x)+f''(x)+f'''(x).... , where f(x) is an indefinitely differentiable function and dash denotes the order of derivatives. If f(0)=1 ,then f(x) is (a) e^(x/2) (b) e^x (c) e^(2x) (d) e^(4x)

A function f satisfies the condition f(x)=f^(prime)(x)+f^(primeprime)(x)+f^(primeprimeprime)(x)...... ,where f(x) is a differentiable function indefinitely and dash denotes the order of derivative. If f(0)=1,t h e nf(x) is (A)e^(x/2) (B) e^x (C) e^(2x) (D) e^(4x)

A function f satisfies the condition f(x)=f^(prime)(x)+f^(primeprime)(x)+f^(primeprimeprime)(x) ...... ,where f(x) is a differentiable function indefinitely and dash denotes the order of derivative. If f(0)=1,t h e nf(x) is (A) e^(x/2) (B) e^x (C) e^(2x) (D) e^(4x)

A function satisfies the conditions f(x+y)=f(x) + f(y), AA x, y in R then f is

A function f:R rarr R satisfies the condition x^(2)f(x)+f(1-x)=2x-x^(4). Then f(x) is

If f(x) = f(x) + f'(x) + f'''(x) …….. oo also f(0) = 1 and f(x) is a differentiable function indefinitely then f(x) has the value