Home
Class 12
MATHS
" 14.If "A+B+C=pi" ,prove that "|[sin^(2...

" 14.If "A+B+C=pi" ,prove that "|[sin^(2)A,cot A,1],[sin^(2)B,cot B,1],[sin^(2)C,cot C,1]|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , then the value of determinant |{:(sin^(2)A, cotA,1),(sin^(2)B,cotB,1),(sin^(2)C,cot C,1):}| is equal to

If f(theta)=|[sin^2A,cot A,1],[sin^2B,cotB,1],[sin^2C,cotC,1]| , then (a) t a n A+t a n B+t a n C (b) cotAcotBcotC (c) sin^2A+sin^2B+sin^2C (d) 0

If f(theta)=det[[sin^(2)A,cot A,1sin^(2)B,cos B,1sin^(2)B,cos B,1sin^(2)C,cos C,1]], then (a) sin^(2)A+sin B+c(b)cot A cot B cot C(c)sin^(2)A+sin^(2)B+sin^(2)C(d)0

If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then (a) t a n A+t a n B+c (b) cotAcotBcotC (c) sin^2A+sin^2B+sin^2C (d) 0

If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then (a) t a n A+t a n B+c (b) cotAcotBcotC (c) sin^2A+sin^2B+sin^2C (d) 0

For any "Delta"A B C the value of determinant |sin^2\ \ A cot A1sin^2B cot B1sin^2\ \ C cot C1| is equal to- s in A s in B s in C b. 1 c. 0 d. s in A+s in B+s in C

For any "Delta"A B C the value of determinant |sin^2\ \ A cot A1sin^2B cot B1sin^2\ \ C cot C1| is equal to- s in A s in B s in C b. 1 c. 0 d. s in A+s in B+s in C

If A+B = 90^(@) , then prove that sin^(2)A+sin^(2) B=1 tan^(2)A+cot^(2) B=0 .

If A+B+C=(pi)/(2) , then prove that sin ^(2) A+ sin ^(2) B + sin ^(2) C=1-2 A sin B sin C .

If A+B+C=pi , prove that: cot^2 A+cot^2 B + cot^2 C ge 1