Home
Class 11
MATHS
" If "abc!=0" and if "|[a,b,c],[b,c,a],[...

" If "abc!=0" and if "|[a,b,c],[b,c,a],[c,a,b]|=0quad " then "(a^(3)+b^(3)+c^(3))/(abc)=

Promotional Banner

Similar Questions

Explore conceptually related problems

(a^(3)+b^(3)-c^(3)+3abc)/(a+b-c)=

if abc!=0 and if |[a,b,c],[b,c,a],[c,a,b]|=0 then (a^3+b^3+c^3)/(abc)=

If abc!=0 and if |(a,b,c),(b,c,a),(c,a,b)|=0 then (a^(3)+b^(3)+c^(3))/(abc)=

If a!=6,b,c satisfy |[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

If a+b+c= 0 find a^(3) + b^(3) + c^(3) + 3abc

If a!=6,b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 then abc

Prove the following: [[a,b,c],[b,c,a],[c,a,b]]=3abc-a^3-b^3-c^3

If a,b,c in R such that a^3+b^3+c^3=2 and |[a,b,c],[b,c,a],[c,a,b]|=0 then find abc

det[[a,b,ca-b,b-c,c-ab+c,c+a,a+b]]=a^(3)+b^(3)+c^(3)-3abc

If a ne b, b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =