Home
Class 10
MATHS
[" The zeros of the polynomial "x^(2)-sq...

[" The zeros of the polynomial "x^(2)-sqrt(2x)-12" are,"],[sqrt(2)-sqrt(2)" b) "3sqrt(2),-2sqrt(2)" cy "-3sqrt(2),2sqrt(2)" dy "3sqrt(2),2sqrt(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

The zeros of the polynomial x^2-sqrt2x-12 are a) 3sqrt2,2sqrt2 b) sqrt2,-sqrt2 c) 3sqrt2,-2sqrt2 d) -3sqrt2,2sqrt2

(3sqrt(2)-2sqrt(3))/(3sqrt(2)+2sqrt(3))+(3sqrt(2)+2sqrt(3))/(3sqrt(2)-2sqrt(3))=

(3sqrt(2)-2sqrt(3))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2))

if a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)),b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))

(2sqrt3 + sqrt2)(2sqrt3-sqrt2)

(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=2-b sqrt(6) find b

Find the polynomial whose zeroes are 3+sqrt(2) and 3-sqrt(2)

Simplify- (3*sqrt(2)-2*sqrt(3))/(3*sqrt(2)+2*sqrt(3))+(sqrt(12))/(sqrt(3)-2)

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

If x=5+2sqrt(6), then sqrt(x)-(1)/(sqrt(x)) is a.2sqrt(2)b2sqrt(3)c*sqrt(3)+sqrt(2)d*sqrt(3)-sqrt(2)