Home
Class 12
MATHS
If underset(x to a)("lim")(f(x)-f(a))/(x...

If `underset(x to a)("lim")(f(x)-f(a))/(x-a)` exists, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=0" and "underset(xto0)("lim")(f(x))/(x) exists then this limits is equl to

It is given that f'(a) exists, then underset(x to a) (lim) (x f(a) - af(x))/(x-a) is ............... .

If lim_(x->a)(f(x)/(g(x))) exists, then

If lim_(xtoa) {(f(x))/(g(x))} exists, then

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/(x-a) )

If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/(x-a) )