Home
Class 11
MATHS
If n >2, then prove that C1(a-1)-C2xx(a-...

If `n >2,` then prove that `C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n>2, then prove that C_(1)(a-1)-C_(2)xx(a-2)+...+(-1)^(n-1)C_(n)(a-n)=a, where C_(r)=^(n)C_(r)

Prove that C_0-2^2C_1+3^2C_2-4^2C_3++(-1)^n(n+1)^2xxC_n=0w h e r eC_r=^n C_r .

Prove that C_0-2^2C_1+3^2C_2-4^2C_3+...+(-1)^n(n+1)^2xxC_n=0w h e r eC_r=^n C_r .

Find the sum 1xx2xxC_1+2xx3C_2+ +n(n+1)C_n ,w h e r eC_r=^n C_rdot

Find the sum 1C_0+2C_1+3C_2++(n+1)C_n ,w h e r eC_r=^n C_rdot

Find the sum 1C_0+2C_1+3C_2++(n+1)C_n ,w h e r eC_r=^n C_rdot

Prove that ""^(n-2)C_r+2* ""^(n-2)C_(r-1)+ ""^(n-2)C_(r-2)=""^nC_r

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

Prove that sum_(r=1)^k(-3)^(r-1)^(3n)C_(2r-1)=0,w h e r ek=3n//2 and n is an even integer.

Prove that (C_(1))/(2)+(C_(3))/(4) +(C_(5))/(6)+….=2^(n)/(n+1) where C_(r) =^(n)C_(r)