Home
Class 12
MATHS
If u=sin^(-1)((2x)/(1+x^2)) and v=tan^(-...

If `u=sin^(-1)((2x)/(1+x^2))` and `v=tan^(-1)((2x)/(1-x^2))` , where `-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is :

If u=sin^(-1)((2x)/(1+x^(2)))andv=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Let U=sin^(-1)((2x)/(1+x^2)) and V=tan^(-1)((2x)/(1-x^2)) , then (d U)/(d V)= (a) 1//2 (b) x (c) (1-x^2)/(1+x^2) (d) 1

Let U=sin^(-1)((2x)/(1+x^(2))) and V=tan^(-1)((2x)/(1-x^(2))), then (dU)/(dV)=1/2(b)x(c)(1-x^(2))/(1+x^(2))(d)1

If u = sin^-1(2x/(1+x)^2) and v = tan^-1(2x/(1-x^2)) , the du/dv is

If sin^(-1) ((2a)/(1+a^2))+cos^(-1) ((1-a^2)/(1+a^2))=tan^(-1) ((2x)/(1-x^2)) , where a, x in (0,1), then the value of x is :

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is