Home
Class 10
MATHS
In DeltaABC, AC=BC and /ACB=90^(@) then ...

In `DeltaABC`, `AC=BC` and `/_ACB=90^(@)` then prove `AB^(2)=2AC^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in DeltaABC, AD_|_ BC, then prove that AB^(2) + CD^(2) = AC^(2) + BD^(2)

In Delta ACB, angle C = 90^(@) and CD bot AB Prove that (BC^(2))/(AC^(2)) = (BD)/(AD) .

In Delta ACB, angle C = 90^(@) and CD bot AB Prove that (BC^(2))/(AC^(2)) = (BD)/(AD) .

In DeltaABC , seg AD bot seg BC , DB=3CD . Prove that 2AB^(2)=2AC^(2)+BC^(2) .

In DeltaABC , seg AD bot seg BC , DB=3CD . Prove that 2AB^(2)=2AC^(2)+BC^(2) .

In triangleABC , angleA= 60^(@) prove that BC^(2)= AB^(2)+AC^(2)- AB . AC

In triangleABC , angleA= 60^(@) prove that BC^(2)= AB^(2)+AC^(2)- AB . AC

In DeltaACB, angleC=90^(@) and CD_|_AB Prove that (BC^(2))/(AC^(2))=(BD)/(AD) .

In DeltaABC if /_BAC=90^(@) and AB=AC , then /_ABC is

In figure /_ACB=90^(@) and Prove that (BC^(2))/(AC^(2))=(BD)/(AD)