Home
Class 11
MATHS
" 3.If "cot^(-1)x+cot^(-1)y+cot^(-1)z=pi...

" 3.If "cot^(-1)x+cot^(-1)y+cot^(-1)z=pi" ,prove that "xy+yz+zx=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2 , then x + y + z = _____

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/4 then xy+zyz+zx+x+y+z=

If cot^(-1)x+cot^(-1)y + cot^(-1) z = pi/2 , then x +y+z is also equal to a) 1/x+1/y+1/z b)xyz c) xy+yz+zx d)None of these

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1)x +tan^(-1) y +tan^(-1) z=pi/2 . Show that xy+yz+zx =1.

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal to