Home
Class 11
MATHS
lim(x rarr0)(e^(4x)-1)/(x)...

lim_(x rarr0)(e^(4x)-1)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr 0)(e^(4x)-1)/(x)

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

Evaluate the following limit : lim_(x rarr 0) (e^(4x)-1)/x .

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

Prove quad that quad (i) lim_(x rarr0)(a^(x)-1)/(x)=log_(e)aquad (ii) lim_(x rarr0)(log_(1+x))/(x)=1

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(5x)-1)/(x)

Consider the function f(x) = (x^2 - 4)/(x - 2) If lim_(x rarr a) (x^4 - a^4)/(x -a) = lim_(x rarr 0) (e^(4x) -1)/x , find all possible values of a.

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)