Home
Class 12
MATHS
" If "3f(x)-f((1)/(x))=log(e)x^(4)," for...

" If "3f(x)-f((1)/(x))=log_(e)x^(4)," for "x>0," find "f(e^(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3f(x)-f((1)/(x))= log_(e) x^(4) for x gt 0 ,then f(e^(x))=

If 3f(x)-f(1/x)=log_(e)x^(4)(xgt0) , then prove that f(e^(x))=x .

If 3 f(x) - f((1)/(x) ) = log x^(4) , then f(e^(-x)) is

3f(x)-f(1/x)=log_(e)x^(4)(xgt0) , then f(10^(-x)) is equal to

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

f(x)=5^(log_(e)x),x>0 Find the imverse