Home
Class 11
MATHS
(1)/(2!)+(2)/(3!)+(3)/(4!)+......+(n)/((...

(1)/(2!)+(2)/(3!)+(3)/(4!)+......+(n)/((n+1)!)=

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.......+(1)/(n(n+1))=(n)/(n+1),n in N is true for

For all quad prove that (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)

For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)

For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)

Using Mathemtical induction, show that for any natural number n, (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)

underset(n to oo)lim {(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))}=

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

For all ninNN , prove by principle of mathematical induction that, (1)/(1*2)+(1)/(2*3)+(1)/(3*4)+ . . .+(1)/(n(n+1))=(n)/(n+1) .