Home
Class 9
MATHS
xy(z^(2)+1)+x(x^(2)+y^(2))...

xy(z^(2)+1)+x(x^(2)+y^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(8)zx^(2)y-(1)/(7)z^(2)xy+(1)/(6)zy^(2)x-(1)/(5)zy^(2)x^(2)-(1)/(4)xyz^(2)+(1)/(3)xy^(2)z-(1)/(2)x^(2)y^(2)z

(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

Prove that |(x^(2),x^(2)-(y-z)^(2),yz),(y^(2),y^(2)-(z-x)^(2),zx),(z^(2),z^(2)-(x-y)^(2),xy)|=(x-y)(y-z)(z-x)(x+y+z)(x^(2) + y^(2) + z^(2)) .

If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= (4xyz)/((1-x^(2))(1-y^(2)) (1-z^(2)))

If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= 4xyz/((1-x^(2))(1-y^(2)) (1-z^(2)))