Home
Class 10
MATHS
[" If the roots of the quadratic equatio...

[" If the roots of the quadratic equation "(c^(2)-ab)x^(2)-2(a^(2)-bc)x+b^(2)-ac=0" in "x" are equal,then show "],[" that either "a=0" or "a^(3)+b^(3)+c^(3)=3abc]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation (c^(2)-ab)x^(2)-2(a^(2)-bc)x+b^(2)-ac=0 in x are equal, show that either a=0 or a^(3)+b^(3)+c^(3)=3abc .

If the roots of the equation (c^(2)-ab)x^(2)-2(a^(2)-bc)x+b^(2)-ac=0 are equal,prove that either a=0 or a^(3)+b^(3)+c^(3)=3abc

If the roots of the equation (c^(2)-ab)x^(3)-2(a^(2)-bc)x+b^(2)-ac=0 are real and equal prove that either a=0 (or) a^(3)+b^(3)+c^(3)=3"abc" .

The condition for the roots of the equation,(c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)=0 to be equal is:

The roots of the quadratic equation (a+b-2c)x^(2)+(2a-b-c)x+(a-2b+c)=0 are

The roots of the quadratic equation (a + b-2c)x^2- (2a-b-c) x + (a-2b + c) = 0 are

If c^(2) ne ab and the roots of (c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)=0 are equal, then show that a^(3)+b^(3)+c^(3)=3abc" or "a=0

If the roots of the quadratic equation (a-b) x^(2) + (b - c) x + (c - a) =0 are equal , prove that b +c = 2a