Home
Class 12
MATHS
If lim(x to 0)(1+x)^(1/x)=e, prove that ...

If `lim_(x to 0)(1+x)^(1/x)=e,` prove that `lim_(x to 0)(1+3x)^(((x+2))/(x))=e^(6).`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that lim_(x rarr 0) (1+2x)^(1/x)=e^(2)

lim_(x rarr0)(1+x)^((1)/(x))=e

If lim_(x to 0)x^((1)/(1-x))=e^(-1)

Using lim_(x to 0)(e^(x)-1)/(x)=1 , show that, lim_(x to 0)log_(e)(1+x)/(x)=1

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(x to 0)(e^(2x)-1)/(sin 3x) = ?

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Slove lim_(xto0)((1+x)^(1//x)-e)/x