Home
Class 12
MATHS
If x=te^t and y = 1+logt, find (dy)/(dx...

If `x=te^t` and `y = 1+logt`, find `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2) and y=log t , find (dy)/(dx) .

If x= t log t,y = (log t)/t , find (dy)/(dx) when t=1

If x = ct and y = c/t , find (dy)/(dx) at t = 2 .

If x=ct and y= (c )/(t) , find (dy)/(dx) at t=2

If x=ct and y= (c )/(t) , find (dy)/(dx) at t=2 is

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

If x = ct and y=c/t , find (dy)/(dx) at t=2.

If x=a t^2,\ \ y=2\ a t , then find (dy)/(dx)

If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)