Home
Class 12
MATHS
Let f(x)=(1)/(sqrt(18-x^(2))) What is ...

Let `f(x)=(1)/(sqrt(18-x^(2)))`
What is the value of `lim_(xto3) (\f(x)-f(3))/(x-3)`?

A

0

B

`-(1)/(9)`

C

`(1)/(3)`

D

`(1)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will follow these steps: ### Step 1: Identify the function and the limit We have the function: \[ f(x) = \frac{1}{\sqrt{18 - x^2}} \] We need to find: \[ \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} \] ### Step 2: Calculate \( f(3) \) First, we calculate \( f(3) \): \[ f(3) = \frac{1}{\sqrt{18 - 3^2}} = \frac{1}{\sqrt{18 - 9}} = \frac{1}{\sqrt{9}} = \frac{1}{3} \] ### Step 3: Rewrite the limit expression Now, substituting \( f(3) \) into our limit expression: \[ \lim_{x \to 3} \frac{f(x) - \frac{1}{3}}{x - 3} = \lim_{x \to 3} \frac{\frac{1}{\sqrt{18 - x^2}} - \frac{1}{3}}{x - 3} \] ### Step 4: Combine the fractions in the numerator To combine the fractions in the numerator, we find a common denominator: \[ \frac{1}{\sqrt{18 - x^2}} - \frac{1}{3} = \frac{3 - \sqrt{18 - x^2}}{3\sqrt{18 - x^2}} \] Thus, our limit becomes: \[ \lim_{x \to 3} \frac{\frac{3 - \sqrt{18 - x^2}}{3\sqrt{18 - x^2}}}{x - 3} = \lim_{x \to 3} \frac{3 - \sqrt{18 - x^2}}{3\sqrt{18 - x^2}(x - 3)} \] ### Step 5: Apply L'Hôpital's Rule As \( x \to 3 \), both the numerator and denominator approach 0, so we can apply L'Hôpital's Rule: \[ \lim_{x \to 3} \frac{3 - \sqrt{18 - x^2}}{3\sqrt{18 - x^2}(x - 3)} \rightarrow \text{Differentiate the numerator and denominator} \] The derivative of the numerator \( 3 - \sqrt{18 - x^2} \) is: \[ \frac{d}{dx}(3 - \sqrt{18 - x^2}) = \frac{x}{\sqrt{18 - x^2}} \] The derivative of the denominator \( 3\sqrt{18 - x^2}(x - 3) \) using the product rule is: \[ 3\left(\frac{x}{\sqrt{18 - x^2}}(x - 3) + \sqrt{18 - x^2}\right) \] ### Step 6: Evaluate the limit again Now substituting \( x = 3 \) into the derivatives: \[ \text{Numerator: } \frac{3}{\sqrt{9}} = 1 \] \[ \text{Denominator: } 3\left(\frac{3}{3}(0) + 3\right) = 9 \] Thus, the limit evaluates to: \[ \lim_{x \to 3} \frac{1}{9} = \frac{1}{9} \] ### Final Answer The value of the limit is: \[ \frac{1}{9} \]

To solve the limit problem, we will follow these steps: ### Step 1: Identify the function and the limit We have the function: \[ f(x) = \frac{1}{\sqrt{18 - x^2}} \] We need to find: \[ \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    NDA PREVIOUS YEARS|Exercise MCQs|119 Videos
  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos

Similar Questions

Explore conceptually related problems

Find the value of lim_(xto3^(-)) (x-2)/(x-3).

Let f(x)=(1)/(sqrt(18-x^(2))) The value of Lt_(x rarr3)(f(x)-f(3))/(x-3) is

lim_(xto3)sqrt(1-cos2(x-3))/(x-3)

If F(x)=sqrt(9-x^(2)) , then what is lim_(xto1) (F(x)-F(1))/(x-1) equal to?

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

If lim_(x rarr oo)f(x) is finite and non zero and lim_(x rarr oo)(f(x)+((3f(x)+1)/(f^(2)(x)))=3 then find the value of lim_(x rarr oo)f(x)

NDA PREVIOUS YEARS-FUNCTIONS, LIMIT, CONTINUITY AND DIFFERENTIABILITY-MCQs
  1. Let R be the set of real numbers and let f:RtoR be a function such tha...

    Text Solution

    |

  2. Let f(x)=(1)/(sqrt(18-x^(2))) What is the value of lim(xto3) (\f(x)-...

    Text Solution

    |

  3. Let f(x+y)=f(y)andf(1)=2" for all "x,yinR where f(x) is continuous fun...

    Text Solution

    |

  4. Given f(x)=log[((1+x))/((1-x))]andg(x)=((3x+x^(2)))/((1+3x^(2))), then...

    Text Solution

    |

  5. What is the value of lim(xto0) (sin|x|)/(x)?

    Text Solution

    |

  6. What is the equivalent definition of the function given by {:f(x)={(...

    Text Solution

    |

  7. If f:RtoR^(+) such that f(x)=(1//3)^(x), the what is the value of f^(-...

    Text Solution

    |

  8. What is the value of lim(x to 0) (xsin5x)/(sin^(2)4x)

    Text Solution

    |

  9. If f(x)=(1+x)^(5//x) is continuous at x=0, then what is the value of f...

    Text Solution

    |

  10. Consider the following statements: 1. The function f(x) = greatest i...

    Text Solution

    |

  11. If lim(x to a) [(f(x))/(g(x))] exists, then which one of the following...

    Text Solution

    |

  12. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  13. The above curve shows the graph of a^(x) under which one of the follow...

    Text Solution

    |

  14. If f(x)=log((1+x)/(1-x)), "then f "((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  15. If f(x)=(x+1)^(cotx) is continuous at x=0, then what is f(0) equal to?

    Text Solution

    |

  16. What is the value of lim(xtooo) ((x-2)/(x+2))^(x+2) = ?

    Text Solution

    |

  17. If the derivative of the function f(x) ={ax^2+b , x lt -1 and bx^2 ...

    Text Solution

    |

  18. If f(x) is differentiable everywhere, then which one of the following ...

    Text Solution

    |

  19. Consider the cubic equation x^3 + ax^2 + bx + c = 0, where a, b, c are...

    Text Solution

    |

  20. If (x-a)/(b+c)+(x-b)/(c+a)+(x-c)/(a+b)=3 then value of x is

    Text Solution

    |